A Note on Impulsive Fractional Evolution Equations with Nondense Domain
نویسندگان
چکیده
منابع مشابه
Integral Solutions of Fractional Evolution Equations with Nondense Domain
In this article, we study the existence of integral solutions for two classes of fractional order evolution equations with nondensely defined linear operators. First, we consider the nonhomogeneous fractional order evolution equation and obtain its integral solution by Laplace transform and probability density function. Subsequently, based on the form of integral solution for nonhomogeneous fra...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملControllability of Impulsive Fractional Evolution Integrodifferential Equations in Banach Spaces
According to fractional calculus theory and Banach’s fixed point theorem, we establish the sufficient conditions for the controllability of impulsive fractional evolution integrodifferential equations in Banach spaces. An example is provided to illustrate the theory.
متن کاملExistence of Solutions of Abstract Fractional Impulsive Semilinear Evolution Equations
In this paper we prove the existence of solutions of fractional impulsive semilinear evolution equations in Banach spaces. A nonlocal Cauchy problem is discussed for the evolution equations. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the theory.
متن کاملImpulsive fractional differential equations with variable times
K e y w o r d s I m p u l s i v e functional differential equations, Variable times, Fixed point. 1. I N T R O D U C T I O N This note is concerned with the existence of solutions, for the initial value problems (IVP for short), for first-order functional differential equations with impulsive effects y' ( t )=f( t , yt), a.e. t e J = [ O , T ] , t¢Tk(y(t)), k = l , . . . , m , (1) y(t +) = Ik(y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2012
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2012/359452